Pyteomics documentation v4.7.3

pyteomics.auxiliary.utils

Contents

Source code for pyteomics.auxiliary.utils

from __future__ import print_function

import base64
import zlib
from functools import wraps
from collections import namedtuple


try:
    basestring
except NameError:
    basestring = (str, bytes)

try:
    import numpy as np
except ImportError:
    np = None

try:
    import pynumpress
except ImportError:
    pynumpress = None

from .structures import PyteomicsError





[docs] def memoize(maxsize=1000): """Make a memoization decorator. A negative value of `maxsize` means no size limit.""" def deco(f): """Memoization decorator. Items of `kwargs` must be hashable.""" memo = {} @wraps(f) def func(*args, **kwargs): key = (args, frozenset(kwargs.items())) if key not in memo: if len(memo) == maxsize: memo.popitem() memo[key] = f(*args, **kwargs) return memo[key] return func return deco
def _decode_base64_data_array(source, dtype, is_compressed): """Read a base64-encoded binary array. Parameters ---------- source : str A binary array encoded with base64. dtype : dtype The type of the array in numpy dtype notation. is_compressed : bool If True then the array will be decompressed with zlib. Returns ------- out : numpy.array """ decoded_source = base64.b64decode(source.encode('ascii')) if is_compressed: decoded_source = zlib.decompress(decoded_source) output = np.frombuffer(bytearray(decoded_source), dtype=dtype) return output _default_compression_map = { 'no compression': lambda x: x, 'zlib compression': zlib.decompress, } def _pynumpressDecompress(decoder): def decode(data): return decoder(np.frombuffer(data, dtype=np.uint8)) return decode def _zlibNumpress(decoder): def decode(data): return decoder(np.frombuffer(zlib.decompress(data), dtype=np.uint8)) return decode if pynumpress: _default_compression_map.update( { 'MS-Numpress short logged float compression': _pynumpressDecompress(pynumpress.decode_slof), 'MS-Numpress positive integer compression': _pynumpressDecompress(pynumpress.decode_pic), 'MS-Numpress linear prediction compression': _pynumpressDecompress(pynumpress.decode_linear), 'MS-Numpress short logged float compression followed by zlib compression': _zlibNumpress(pynumpress.decode_slof), 'MS-Numpress positive integer compression followed by zlib compression': _zlibNumpress(pynumpress.decode_pic), 'MS-Numpress linear prediction compression followed by zlib compression': _zlibNumpress(pynumpress.decode_linear), }) class ArrayConversionMixin(object): _dtype_dict = {} _array_keys = ['m/z array', 'intensity array'] def __init__(self, *args, **kwargs): self._dtype_dict = {None: None} dtype = kwargs.pop('dtype', None) if isinstance(dtype, dict): self._dtype_dict.update(dtype) elif dtype: self._dtype_dict = {k: dtype for k in self._array_keys} self._dtype_dict[None] = dtype self._convert_arrays = kwargs.pop('convert_arrays', 1) if self._convert_arrays and np is None: raise PyteomicsError('numpy is required for array conversion') super(ArrayConversionMixin, self).__init__(*args, **kwargs) def __getstate__(self): state = super(ArrayConversionMixin, self).__getstate__() state['_dtype_dict'] = self._dtype_dict state['_convert_arrays'] = self._convert_arrays state['_array_keys'] = self._array_keys return state def __setstate__(self, state): super(ArrayConversionMixin, self).__setstate__(state) self._dtype_dict = state['_dtype_dict'] self._convert_arrays = state['_convert_arrays'] self._array_keys = state['_array_keys'] def _build_array(self, k, data): dtype = self._dtype_dict.get(k) return np.array(data, dtype=dtype) def _convert_array(self, k, array): dtype = self._dtype_dict.get(k) if dtype is not None: return array.astype(dtype) return array def _build_all_arrays(self, info): if self._convert_arrays: for k in self._array_keys: if k in info: info[k] = self._build_array(k, info[k]) class MaskedArrayConversionMixin(ArrayConversionMixin): _masked_array_keys = ['charge array'] _mask_value = 0 def __init__(self, *args, **kwargs): self._convert_arrays = kwargs.pop('convert_arrays', 2) kwargs['convert_arrays'] = self._convert_arrays super(MaskedArrayConversionMixin, self).__init__(*args, **kwargs) def __getstate__(self): state = super(MaskedArrayConversionMixin, self).__getstate__() state['_masked_array_keys'] = self._masked_array_keys state['_mask_value'] = self._mask_value return state def __setstate__(self, state): super(MaskedArrayConversionMixin, self).__setstate__(state) self._masked_array_keys = state['_masked_array_keys'] self._mask_value = state['_mask_value'] def _build_masked_array(self, k, data): array = self._build_array(k, data) return self._convert_masked_array(k, array) def _convert_masked_array(self, k, array): return np.ma.masked_equal(array, self._mask_value) def _ensure_masked_array(self, k, data): if isinstance(data, np.ndarray): return self._convert_masked_array(k, data) return self._build_masked_array(self, k, data) def _build_all_arrays(self, info): super(MaskedArrayConversionMixin, self)._build_all_arrays(info) if self._convert_arrays == 2: for k in self._masked_array_keys: if k in info: info[k] = self._ensure_masked_array(k, info[k]) if np is not None:
[docs] class BinaryDataArrayTransformer(object): """A base class that provides methods for reading base64-encoded binary arrays. Attributes ---------- compression_type_map : dict Maps compressor type name to decompression function """ compression_type_map = _default_compression_map
[docs] class binary_array_record(namedtuple( "binary_array_record", ("data", "compression", "dtype", "source", "key"))): """Hold all of the information about a base64 encoded array needed to decode the array. """
[docs] def decode(self): """Decode :attr:`data` into a numerical array Returns ------- np.ndarray """ return self.source._decode_record(self)
def _make_record(self, data, compression, dtype, key=None): return self.binary_array_record(data, compression, dtype, self, key) def _decode_record(self, record): array = self.decode_data_array( record.data, record.compression, record.dtype) return self._finalize_record_conversion(array, record) def _finalize_record_conversion(self, array, record): return array def _base64_decode(self, source): decoded_source = base64.b64decode(source.encode('ascii')) return decoded_source def _decompress(self, source, compression_type=None): if compression_type is None: return source decompressor = self.compression_type_map.get(compression_type) decompressed_source = decompressor(source) return decompressed_source def _transform_buffer(self, binary, dtype): if isinstance(binary, np.ndarray): return binary.astype(dtype, copy=False) return np.frombuffer(binary, dtype=dtype)
[docs] def decode_data_array(self, source, compression_type=None, dtype=np.float64): """Decode a base64-encoded, compressed bytestring into a numerical array. Parameters ---------- source : bytes A base64 string encoding a potentially compressed numerical array. compression_type : str, optional The name of the compression method used before encoding the array into base64. dtype : type, optional The data type to use to decode the binary array from the decompressed bytes. Returns ------- np.ndarray """ binary = self._base64_decode(source) binary = self._decompress(binary, compression_type) if isinstance(binary, bytes): binary = bytearray(binary) array = self._transform_buffer(binary, dtype) return array
[docs] class BinaryArrayConversionMixin(ArrayConversionMixin, BinaryDataArrayTransformer): def _finalize_record_conversion(self, array, record): key = record.key return self._convert_array(key, array)
else: BinaryDataArrayTransformer = None BinaryArrayConversionMixin = None
[docs] def add_metaclass(metaclass): """Class decorator for creating a class with a metaclass.""" def wrapper(cls): orig_vars = cls.__dict__.copy() slots = orig_vars.get('__slots__') if slots is not None: if isinstance(slots, str): slots = [slots] for slots_var in slots: orig_vars.pop(slots_var) orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) if hasattr(cls, '__qualname__'): orig_vars['__qualname__'] = cls.__qualname__ return metaclass(cls.__name__, cls.__bases__, orig_vars) return wrapper

Contents